As of this writing (November 2018), I’m just beginning to collate my notes and impressions after attending the Fifth International Fascia Research Congress (FRC5), held at the scientifically historic Urania Center in Berlin, Germany. There, my colleagues and I (Image 1) joined more than 1,000 diverse professionals from all over the world: manual therapy, movement, sports, and rehabilitation practitioners; academics and researchers; writers; teachers; and more. In standing-room-only crowds, and afterward in the surrounding cafes, river boats, and off-campus events, we listened, learned, socialized, debated, and digested several days of presentations, workshops, panels, art events, screenings, and talks.

Since my deadline for this article is just after this whirlwind of events, I’ll share my still-forming impressions from the stimulating, thought-provoking, and exhausting blizzard of information, as well as the questions I’m still thinking about. In later Massage & Bodywork columns, I’ll write more about some of the most personally interesting aspects of what I learned (such as the interactions between inflammation, fluids, and the nervous system). But in the meantime, here are some brief, hot-off-the-press, incomplete, and somewhat random takeaways from my time at the FRC5.

NOTES FROM THE CONGRESS
Looking for explanations for why myofascial pain and fascial disorders are more common in women than men (and why they vary over women’s lifespans), fascial researcher and orthopedic surgeon Carla Stecco, MD, presented her group’s recent research into sex hormones’ role in fascial remodeling. They see potential implications for better understanding of fascial properties, healing, and nociceptor sensitization.

Stecco also presented the histological evidence behind her group’s proposed redesignation of a class of round fibroblasts as fasciacytes. These “new” cells appear to regulate hyaluronic acid (or HA, which is involved in fascial gliding and elasticity), and in her analysis, have several key differences from other fibroblasts.1

Stecco also shared evidence that endocannabinoid (CB2) receptors in fascia seem to inhibit collagen formation in inflammation, which suggests to me that when these receptors are activated, they may help regulate fibrosis in injury recovery and scarring, but may also imply slower tissue recovery and remodeling.

The late Leon Chaitow, ND, DO, an influential author, teacher, and manual therapist (as well as the founding editor of Journal of Bodywork & Movement Therapies), was honored in a poignant talk by his daughter Sasha Chaitow (Image 2), in which she delivered a posthumous message from her father communicating his wish for

Presentations from the Fifth International Fascia Congress are available from www.fasciacongress.org. The next Congress will be 2021 at McGill University in Montreal, Canada.
Jean-Claude Guimberteau and Gil Hedley admiring the fascia of the pericardium and respiratory diaphragm at the Fascial Net Plastination Project’s exhibit. Image courtesy Stefan Westerback.

Robert Schleip, Ph.D., (center) played a key leadership role in current and past Fascia Research Congresses. Along with Rachelle L. Clauson and Gary Carter (seen here admiring a specimen of the fascia cruris, inset), Schleip also co-coordinated the Fascial Net Plastination Project. Image courtesy Alison Slater.

cross-discipline collaboration within the bodywork field.

I was particularly looking forward to neuroscientist (and Lorimer Moseley collaborator) Paul Hodges’s FRC5 presentations on inflammation, pain, and motor control. A few highlights from my lengthy notes:

Multifidus inflammation was seen after experimentally induced spinal disk injury in pigs, and curiously, in muscles far from the injured disk. This raises questions (for me at least) about the mechanisms of inflammatory triggering and spreading: was the remote inflammation due to biomechanical, circulatory, neurological, or other factors? Or, all of the above?

Most interestingly, people with chronic sciatic pain have an increased representation of the back and leg in their motor cortices (not just their sensory cortices, as I’d expect). This adds a neurological rationale to the practice of using active movement to help resolve inflammation and pain.

When physician and pathology researcher Neil Theise, MD, coauthored a paper about the interstitium earlier this year, the popular press touted him as the “discoverer” of a new organ. Osteopaths, Rolfers, and fascial anatomists (such as Jean-Claude Guimberteau and Gil Hedley, Image 3) were quick to point out that they’d already been talking about the same tissues, layers, and structures (as the loose connective tissues) for many years. Theise’s recent work, however, has emphasized and clarified these layers’ fluid flows, as well as their interconnections with lymphatic flows. This new view of loose connective tissue (such as superficial fascia) has implications that extend to cancer, immune function, and inflammation.

Molecular bioengineering researcher Melody A. Schwartz’s presentation expounded on these interstitial/lymphatic connections, and among other remarkable ideas, I learned that interstitial pressures are lower in lymphedema (tissue swelling), rather than higher as I might have assumed. This, she says, is due to loss of tissue elasticity; and since interstitial fluid flows are fundamental to inflammatory resolution, tissue elasticity has possible implications for non-resolving inflammatory and autoimmune conditions, such as adult-onset psoriasis.

Together with some of my Advanced-Trainings.com faculty colleagues, I also enjoyed some of FRC5’s related exhibits, such as the first public preview of the Fascial Net Plastination Project’s 3D anatomical specimens (Images 4 and 5), and the interactive Palpation Lab, where participants could test their tactile skills.

CLINICAL RELEVANCE

“Clinical relevance” is the litmus test that many of us will use when evaluating fascial (or other) research. Of course, each of our ideas of relevance depends on our favored therapeutic narratives.
Those friendly to fascia will find much in the FRC5 proceedings that has practical relevance to their work. In other circles, and especially on social media, the therapeutic relevance of fascia is sometimes hotly debated, and those who have already been put off by the hype, exaggeration, speciousness, and faddishness unfortunately associated with many fascial approaches are unlikely to change their opinions based on one Congress’s proceedings alone.

From my own point of view, as someone with a range of passions that include fascial science, somatic psychology, pain science, biopsychosocial applications (and most recently, inflammation), I was heartened by the FRC5’s tone of cross-disciplinary curiosity, openness, learning, and discourse. Both in our society and within our field, we can use all the bridges across the chasms between us that we can get.

Still, as practitioners, our main question is most often, “So, how does all this translate into hands-on practice?” The full answer is that it will take time to tell. Though I doubt it’ll take the medical average of 17 years for new research to appear in clinical practice, new ideas need validation, debate, integration, and, of course, application.

Personally, however, since the FRC5, I’m already:
- Remapping my narratives of what happens under my hands to include even more about fluids and flows, and even less about fibers and fascia per se
- Experimenting with the idea that active movement affects cortical maps of inflammation and pain (as does sensory experience, like touch)
- Keeping in mind that there is no one-size-fits-all for any of these approaches

Though we’re learning more all the time about how pain, tissues, fluids, and the nervous system all interact and play a part in hands-on work, each person and each situation is distinct and needs an adaptable approach from us as practitioners. The more options and the broader our view, then, the more versatile and responsive we become.