Mechanical Evaluation of the Role of Intra-Abdominal Pressure within the Thoracolumbar Fascia in Postural Asymmetry: A Finite Element Study

Khaled El-Monajjed, Mark Driscoll

Department of Mechanical Engineering, 817 Sherbrooke Street West
University of McGill, Montreal, QC H3A0C3 Canada
M: +1.514.398.6299 | E-mail: Mark.Driscoll@mcgill.ca

BACKGROUND The mechanism of Intra-Abdominal Pressure (IAP) variation remains enigmatic and has been previously proposed to perform spinal unloading, a backward bending moment, and/or a preparatory role[1]. This study invests a 2D Finite Element Model that works towards a better understanding of the IAP role when an asymmetric posture is induced. METHODS A model was extracted from a transverse plane situated at a 19° angle positioned at the L2-L3 spinal level from the sagittal plane. A two-layered Thoracolumbar Fascia (TLF) model was subsequently created (Fig. 1). Material properties of the soft tissues were based on previously published ex-vivo data and assumed to be linear and uniform. Boundary conditions designate a fixed support of the L3 vertebra and the compartment pressures were designated as the input values based on previously established in-vivo data. A symmetric case ($P_L = P_R = 24.2 \text{ mmHg}$), defining the control, with equal Paraspinal Muscle Compartmental (PMC) pressure was compared to imposed asymmetric cases ($P_R = 24.2 \text{ mmHg}, P_L = 11.8 \text{ mmHg}$) using a finite element platform (ANSYS v18.1). For each case, the intra-abdominal pressure (P_A) was varied between 3.4 and 20.4 mmHg. The reaction force outputs were then validated with an analogous in-vitro experiment using load cells[2]. RESULTS Simulation results displayed similar decreasing trends for the posterior force on the spinous process (T_{PLF}) in both cases. Moreover, the contact forces between the abdominal muscles and the TLF (T_{CL} and T_{CR}) identically increased in both cases. The symmetric case portrayed equal reaction forces at the transverse processes (T_{ALFL} and T_{ALFR}). However, asymmetric pressures in the PMC resulted with a shift to the T_{ALFL} curve to, consequently, intersect with the T_{ALFR} curve at a single point of equal tension. CONCLUSION Increasing IAP tended to decrease the reaction force on the spinous process which may allude towards a relieving role. Moreover, the elevation of IAP resulted with a point of equal tension between the T_{ALFL} and T_{ALFR}. This suggests that one role the IAP may possess is a neutralizing effect in asymmetric postures by compensating for the higher-pressure difference between the left and right PMC.

Fig 1: Finite element Model. P_R: Right Paraspinal Compartmental Pressure, P_L: Left Paraspinal Compartmental Pressure, P_A: Intra-Abdominal Pressure, T_{ALFL}: Left Anterior Layer of the TLF Reaction Force, T_{ALFR}: Right Anterior Layer of the TLF Reaction Force, T_{PLF}: Posterior Layer of the TLF Reaction Force, T_{CR}: Right Contact Reaction Force and T_{CL}: Left Contact Reaction Force.

REFERENCES