Hormone receptor expression in human fascial tissue and modulation of the extracellular matrix according to the hormone levels

Dr. Caterina Fede, Anatomy Institute, Department of Neuroscience, University of Padova, Italy
Dr. Chenglei Fan, Department of Neuroscience, Institute of Human Anatomy, University of Padova, Italy
Prof. Nathaly Gaudreault, School of rehabilitation, University of Sherbrooke, Canada
Prof. Andrea Porzianoto, Department of Neuroscience, Institute of Human Anatomy, University of Padova, Italy
Prof. Raffaele De Caro, Department of Neuroscience, Institute of Human Anatomy, University of Padova, Italy
Prof. Carla Stecco, Anatomy Institute, Department of Neuroscience, University of Padova, Italy

Introduction/Background

Many clinical and experimental findings point to sex differences in myofascial pain, demonstrating that adult women tend to have different myofascial problems with respect to men [1]. It is possible that sex hormones can play a role in extracellular matrix and collagen remodeling and thus contribute to functions of myofascial tissue, causing a sensitization of fascial nociceptors.

Methods

This study was approved by the Institutional Ethics Review Board according to ethical regulations regarding research conducted on human tissues. Immunohistochemical and molecular investigations of relaxin receptor 1 (RXFP1) and estrogen receptor-alpha (ERα) were carried out on samples of human fascia lata collected from females volunteers patients during orthopedic surgery (age between 42 and 70 yrs, divided into pre- and post-menopausal groups), and in fibroblast cells isolated from deep fascia. Furthermore, an in vitro stimulation was performed with levels of beta-estradiol equal to the follicular phase or to the periovulatory phase, and the matrix was analyzed after Sirius Red staining.

Results

RXFP1 and ERα are expressed in all the human fascial districts examined (Figure 1) and in fascial fibroblasts culture cells, to a lesser degree in the post-menopausal with respect to the pre-menopausal women.

Furthermore, different levels of beta-estradiol modulate the collagen production, that increases when the hormone levels rise up to the periovulatory concentration (~400 pg/mL) (Figure 2).

Conclusion

Our results demonstrated that the fibroblasts located within different districts of the muscular fasciae express sex hormone receptors and can modulate the extracellular matrix according to the hormone levels, influencing the tissue hydration and the lubrication of sliding surfaces. These results can help to explain the link between hormonal factors and myofascial pain: estrogen and relaxin play a key role in extracellular matrix remodeling by inhibiting fibrosis and inflammatory activities, both important factors affecting fascial stiffness and sensitization of fascial nociceptors.

![Fig. 1: ERα (A) and RXFP1 (B) expression in the rectus sheath of the abdomen. Scale bars: 50 μm.](image1)

![Fig. 2: collagen staining of fascial cells: control (A), cells incubated with follicular (B) or periovulatory (C) phase levels of estradiol.](image2)
References
